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Lattice Boltzmann model for incompressible flows through porous media
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In this paper a lattice Boltzmann model is proposed for isothermal incompressible flow in porous media. The
key point is to include the porosity into the equilibrium distribution, and add a force term to the evolution
equation to account for the linear and nonlinear drag forces of the medium~the Darcy’s term and the Forche-
imer’s term!. Through the Chapman-Enskog procedure, the generalized Navier-Stokes equations for incom-
pressible flow in porous media are derived from the present lattice Boltzmann model. The generalized two-
dimensional Poiseuille flow, Couette flow, and lid-driven cavity flow are simulated using the present model. It
is found the numerical results agree well with the analytical and/or the finite-difference solutions.
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I. INTRODUCTION

Transport phenomena in a porous medium arise in m
fields of science and engineering. In the past several deca
flow in porous media has been studied both experiment
and theoretically. Flow in porous media usually involv
three scales: the pore scale, the representative eleme
volume ~REV! scale, and the domain scale. The REV is d
fined as a minimum element at which scale characteristic
a porous flow holds. The REV scale is much larger than
pore scale but is much smaller than the domain scale
classical studies, flow in porous media is usually modeled
some semiempirical models due to the complex structure
porous medium based on the volume-averaging at the R
scale. Several widely used models have been introduce
the literature, such as the Darcy, the Brinkman-exten
Darcy, and the Forchheimer-extended Darcy models. A
cent achievement in modeling flow in porous media is
so-called generalized model, in which all fluid forces and
solid drag force are considered in the momentum equa
@1–3#. The Darcy and the two extended models~Brinkman
and Forchheimer! mentioned above can be viewed as t
limiting cases of the generalized model. Furthermore, du
its similarity with the Navier-Stokes equations, this mod
can be used to solve transient flow in porous media. Du
the complexity of the flows in porous media, analytical s
lutions are difficult to obtain except for very few problem
For general cases, only approximate solutions can be
tained numerically. Many numerical simulations have be
conducted in the past using conventional schemes base
discretizations of the semiempirical models@3–8#.

The lattice Boltzmann method~LBM !, a new method for
simulating fluid flow and modeling physics in fluids, has al
been successfully applied to flow in porous media@9#. Two
approaches have been adopted in simulations of porous
using LBM. In the first approach, the fluid in the pores of t
medium is directly modeled by the standard LBM. It is we
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known that unlike the conventional numerical methods ba
on discretizations of macroscopic continuum equatio
LBM is based on microscopic models and mesoscopic
netic equations for fluids. The kinetic nature of LBM enabl
it very suitable for fluid systems involving microscopic in
teractions. Furthermore, the simple bounce-back rule for
slip boundary condition makes it very suitable to simula
the fluid flows in porous media. In fact, the lattice gas a
tomata ~LGA! method, the ancestor of LBM, was alread
applied to study the flows in porous media early in 198
@10,11#, and LBM was applied to porous flow soon after i
emergence in 1989@12#. Later studies confirmed the reliabi
ity of LBM in modeling fluid flow in porous media@12–18#.
In these studies, the fluid is modeled by the standard lat
Boltzmann equation~LBE!, and the interaction between th
fluid and solid is handled with the no-slip bounce-back ru
This is the most straightforward way to apply LBM to po
rous flows. The main advantage of this method is that
tailed local information of the flow can be obtained, whic
can be used to study macroscopic relations. However,
method at the pore scale needs detailed geometric infor
tion, and the size of computation domain cannot be too la
due to limited computer resources since each pore of
medium should contains several lattice nodes. For a la
flow domain, the method may perhaps be unusable. Ano
disadvantage associated with this approach is that the su
ficial ~i.e., the volume-averaged! velocity of the flow cannot
be high. It is known that the volume-averaged velocity of t
flow ū;euf , whereuf andū refer to the pure and average
velocity of the fluid, respectively, ande is the porosity of the
medium. As applied the standard LBM to the interstitial flu
in the pores of the medium, the fluid velocity cannot be t
high due to the low Mach number limit for LBM, and thusū
cannot be high, either, especially for a medium of low p
rosity.

An alternative approach to apply LBM to porous flow
to model the fluid at the REV scale. This is accomplished
including an additional term to the standard LBE to acco
for the presence of a porous medium. For instance, Da
and McCloskey proposed a lattice Boltzmann model by
©2002 The American Physical Society04-1
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troducing a term describing the no-slip boundary condit
@19#. Spaid and Phelan proposed a model~referred to as SP!
based on the Brinkman equation for single-component fl
in porous media@20#. Freed proposed a similar model b
adding a force term to model flows through a resistance fi
@21#. The SP model was later extended for multicompon
system by combining this model with a multicomponent L
algorithm @22#. Recently, Martys improved the SP model b
introducing an effective viscosity in the Brinkman equatio
and the accuracy and stability are also improved@23#. The SP
model and improved versions have been proved to b
simple and a computationally efficient method to mod
flows in porous media. In this approach, the detailed str
ture of the medium is ignored, and the statistical proper
of the medium are included into the model directly. The
fore, the detailed flow information at the pore scale is of
unavailable. However, this approach can be used for syst
of large size; and with appropriate models for the poro
medium, the LBM can produce reasonable results. Howe
although the Brinkman model has been widely used to
scribe flows in porous media, some limitations still exist
this model. As pointed by Vafai and Kim@24#, without a
convective term, there is no mechanism for the developm
of the flow field, and this will lead to a physically flawed an
unrealistic situation. The nonlinear inertial term is not i
cluded in the Brinkman model either, and thus, is suitable
low-speed flows only.

In this paper, we will propose a generalized lattice Bol
mann model for incompressible flows in porous media w
the linear and nonlinear matrix drag components as wel
the inertial and viscous forces taken into account. In t
model, the inertial force is included based on a recently
veloped technique@25#, and the equilibrium distribution
function is modified to account for the porosity of the m
dium. The model is applicable for a medium with both
constant and a variable porosity, and can be used to tran
flows. Through the Chapmann-Enskog expansion, the ge
alized Navier-Stokes equations for flow in porous media
be derived from the model in the incompressible limit. N
merical simulations of the generalized two-dimensional~2D!
Poiseuille flow, Couette flow, and lid-driven cavity flow a
carried out. It is found that the LBM results agree well wi
the analytical and/or the finite-difference solutions.

II. GENERALIZED MODEL FOR POROUS FLOW

The generalized model for isothermal incompressi
fluid flow in porous media was proposed by several grou
In this work we take the form proposed by Nithiarasuet al.
@3#, which is applicable for a medium with both a consta
and a variable porosity. The model can be expressed by
following generalized Navier-Stokes equation:

“•u50, ~1a!

]u

]t
1~u•“ !S u

e D52
1

r
“~ep!1ne¹

2u1F, ~1b!
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wherer is the fluid density,u and p the volume-averaged
velocity and pressure, respectively, andne an effective pa-
rameter.F represents the total body force due to the prese
of a porous medium and other external force fields, and
given by

F52
en

K
u2

eFe

AK
uuuu1eG, ~2!

wheren is the shear viscosity of the fluid that is not nece
sarily the same asne . G is the body force induced by a
external force. The geometric functionFe and the permeabil-
ity K of the porous medium are related to the porositye
based on Ergun’s experimental investigations@26#, and can
be expressed as@27#

Fe5
1.75

A150e3
, ~3!

K5
e3dp

2

150~12e!2
, ~4!

wheredp is the solid particle diameter. One can see that
e→1, i.e., in the absence of porous medium, the generali
momentum equation~1b! reduces to the Navier-Stokes equ
tion for free fluid flows. The second term on the right side
Eq. ~1b! is the Brinkman term accounting for the presence
a solid boundary. The boundary layer may be very thin
some problems, but its inclusion is important, especially
flows involving mass and/or heat transfer. The first and
second terms on the right side of Eq.~2! are the linear
~Darcy! and nonlinear~Forchheimer! drags due to the porou
medium. The quadratic nature of the nonlinear resista
makes it negligible for low-speed flows, but is more no
worthy in hindering the fluid motion for high-speed flow
Without this nonlinear term, Eq.~1b! becomes the
Brinkman-extended Darcy equation.

The flow governed by Eq.~1! is characterized by the po
rosity e and three nondimensional parameters: the Reyno
number Re, the Darcy number Da, and the viscosity ratioJ,
as, respectively, defined as

Re5
LU

n
, Da5

K

L2
, J5

ne

n
, ~5!

where L and U are the characteristic length and velocit
respectively. For a given medium, the ratio between the
ear and the nonlinear drags is about

Feuuu /AK

n/K
;ADaRe. ~6!

Therefore, for the cases in which the Reynolds number or
Darcy number is small, the nonlinear drag can be neglec
and the general model reduces to the Brinkman-exten
Darcy model. On the other hand, for large Re or Da, ho
ever, the nonlinear drag must be considered.
4-2
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III. LATTICE BOLTZMANN MODEL FOR THE
GENERALIZED NAVIER-STOKES EQUATIONS

The LBM originates from the lattice-gas automa
method, and can also be viewed as a special discrete sch
for the Boltzmann equation with discrete velocities. In LBM
the fluid is modeled by a single-particle distribution functi
~DF!. The evolution of the DF is governed by a lattic
Boltzmann equation:

f i~x1eid t ,t1d t!2 f i~x,t !52
f i~x,t !2 f i

(eq)~x,t !

t
, ~7!

where f i(x,t) is the DF for the particle with velocityei at
position x and time t, d t is the time increment.t is the
nondimensional relaxation time andf i

(eq) is the equilibrium
distribution function~EDF!. The EDF must be defined ap
propriately such that the mass and momentum are conse
and some symmetry requirements are satisfied in orde
describe the correct hydrodynamics of the fluid. For e
ample, in theDnQb @28# models, the EDF is defined by

f i
(eq)5v irF11

e•u

cs
2

1
uu:~eiei2cs

2I !

2cs
4 G , ~8!

wherev i is the weight andcs is the sound speed. Bothv i
and cs depend on the underlying lattice. For theD2Q9
model, the discrete velocities are given bye050, and ei
5l i(cosui ,sinui)c with l i51, u i5( i 21)p/2 for i 51 –4,
and l i5A2, u i5( i 25)p/21p/4 for i 55 –8. Here c
5dx /d t anddx is the lattice spacing. The weights are giv
by v054/9, v i51/9 for i 51 –4, v i51/36 for i 55 –8, and
cs5c/A3. In LBM, the fluid densityr and velocityu are
defined by the DFs, i.e.,r5( i f i , ru5( iei f i . It can be
shown that the Navier-Stokes equations can be derived f
the LBE ~7! through a Chapman-Enskog expansion pro
dure in the incompressible limit.

To model incompressible fluid flow in a porous mediu
governed by the above generalized equations in the L
framework, we first propose a LBE for a medium with p
rosity e, but the linear and nonlinear drag effects of t
medium as well as the external force are neglected tem
rally ~i.e., F50). The LBE reads

f ī~x1eid t ,t1d t!2 f ī~x,t !52
f ī~x,t !2 f ī

(eq)~x,t !

t
, ~9!

where f ī(x,t) and f ī
(eq) are the volume-averaged DF an

EDF at the REV scale, respectively. Note that the averag
is only of conceptual significance, just as what is done in
standard LBE where the averaged particle number~or the
distribution function! is used to replace the Boolen numb
in LGA. No averaging is needed in practical simulations.
what follows, the overbars will be omitted for the sake
convenience. To include the effect of the porous medium,
EDF is now defined as
03630
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f i
(eq)5v irF11

e•u

cs
2

1
uu:~eiei2cs

2I !

2ecs
4 G . ~10!

As in the standard LBM, the volume-average fluid densityr
and velocityu are defined by the volume-averaged DFs,

r5(
i

f i , ru5(
i

ei f i . ~11!

Through the Chapman-Enskog procedure, we can obtain
following macroscopic equations from the LBE~9! in the
limit of small Mach number~see the Appendix for details!:

]r

]t
1“•~ru!50, ~12a!

]~ru!

]t
1“•S ruu

e D52“~ep!1“•@rne~“u1u“ !#,

~12b!

where p5cs
2r/e and ne5cs

2(t20.5)d t . If r'r05const,
the above equations reduce to the generalized Navier-St
equation~1! with F50.

For general cases whereFÞ0, the LBE must be modified
to account for the total force. This is done by adding a fo
term into the LBE,

f i~x1eid t ,t1d t!2 f i~x,t !52
f i~x,t !2 f i

(eq)~x,t !

t
1d tFi .

~13!

Recently it is shown that in order to obtain correct equatio
of hydrodynamics, the force termFi must be chosen appro
priately and the fluid velocity must be redefined@25#. A suit-
able choice for flow in porous media governed by Eq.~1! is
to take

Fi5v irS 12
1

2t D Fei•F

cs
2

1
uF:~eiei2cs

2I !

ecs
4 G . ~14!

Accordingly, the fluid velocity is defined as

ru5(
i

ei f i1
d t

2
rF. ~15!

Note thatF also contains the velocity. Equation~15! is a
nonlinear equation for the velocityu. Thanks to the qua-
dratic nature of the equation, the velocityu can be given
explicitly by

u5
v

c01Ac0
21c1uvu

, ~16!

wherev is a temporal velocity defined as

rv5(
i

ei f i1
d t

2
erG. ~17!
4-3
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The two parametersc0 andc1 are given by

c05
1

2 S 11e
d t

2

n

K D , c15e
d t

2

Fe

AK
. ~18!

Following the approach in Ref.@25#, we can obtain the
following macroscopic equations from the LBE~13!:

]r

]t
1“•~ru!50, ~19a!

]~ru!

]t
1“•S ruu

e D52“p1“•@rne~“u1u“ !#1F,

~19b!

where the velocity is given by Eq.~16!. In the incompress-
ible limit, Eqs.~19! reduce to the generalized Navier-Stok
equations~1!. By now, we have derived a generalized latti
Boltzmann equation~GLBE! for flows in porous media. It is
noted that ase51, the GLBE reduces to the standard LB
for flows in the absence of porous media.

If we set Fe50 in the present model, we can obtain
simplified lattice Boltzmann equation~SLBE! for the
Brinkman-extended Darcy model. Note that this simplifi
model is different from the SP model@20# and the improved
version @23# in several ways, although they all use a for
term to represent the presence of the porous medium. F
in the present simplified model, the force is included into
LBE based on the method proposed by Guoet al. @25#,
which can produce correct hydrodynamics. But in the ori
nal SP model, the force is introduced based on the metho
Shan and Chen@29#. However, this approach produces erro
of order t2uFu2 @30#. In the improved SP model@23#, the
force is included based on the method proposed by Ma
et al. @30#. However, we have recently shown that this a
proach also produces undesirable errors@25#. Another differ-
ence between the present SLBE and the improved SP m
lies in the definitions of the equilibrium distribution func
tions. In the latter model, the EDF is the same as the on
standard LBM, but in the present SLBE, the porosity of t
porous medium is included in the EDF explicitly. These fa
indicate that the present GLBE is superior to the original a
improved SP models even in the Brinkman limit in theo
What is more important, the two SP models are not suita
for flows with high Reynolds numbers and Darcy numbe
as indicated by Eq.~6!.

IV. NUMERICAL RESULTS

To validate the present lattice Boltzmann model, we
plied it to three 2D problems: the generalized Poiseuille fl
driven by a constant force, the plane Couette flow betw
two parallel plates, and the lid-driven flow in a square cav
Since no analytical solutions are available for these pr
lems, the simulation results are compared with the analyt
and/or finite-difference solutions for each problem. In o
simulations, unless otherwise noted the viscosity ratio is
sumed to be unity.
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A. Poiseuille flow

We first apply the GLBE to the Poiseuille flow in a 2
channel of widthH filled with a porous medium of porosity
e. The flow is driven by a constant forceG along the channe
direction. As the flow is fully developed along the chann
the streamwise velocity (x-direction! satisfies the following
equation:

ne

e

]2u

]y2
1G2

n

K
u2

Fe

AK
u250, ~20!

with u(x,0)5u(x,H)50, and the lateral velocity componen
v is zero everywhere.

The Reynolds number of the Poiseuille flow is defined
Re5Hu0 /n, whereu0 is the peak velocity of the flow along
the centerline in the Brinkman model~see below! given by

u05
GK

n F12cosh21S rH

2 D G , ~21!

wherer 5Ane/Kne.
In simulations, the porosity is set to be 0.1, Re chan

from 0.01 to 100, and Da changes from 1026 to 102. The
lattice used is a 80380 square mesh, and the relaxation tim
is set to be 0.8. Periodic boundary conditions are applied
the entrance and the exit, and the nonequilibrium extrap
tion scheme@31# is applied to the top and bottom walls fo
no-slip boundary condition. The velocity field is initialized t
be zero at each lattice node with a constant densityr51.0,
and the distribution function is set to be its equilibrium at
50. We first tested the velocity profiles for different valu
of Re and Da. It is found that as the flow reaches the ste
state, the streamwise velocity componentu is uniform along
the channel, and another velocity componentv is of order
O(10212) over the whole field. Note that Eq.~20! is a non-
linear equation and it is difficult to obtain the analytical s
lution. Instead, we solved it using a second-order fini
difference scheme with a uniform mesh of size 1000 in thy
direction, and the boundary condition is specified asu(x,0)
5u(x,H)50. In Fig. 1 the numerical results of the prese
lattice Boltzmann model are compared with the finit
difference results. Excellent agreement can be observed
tween the LBM results and the finite-difference solution
which confirms the validity of the present LBM.

The nonlinear inertial effect due to the porous mediu
~Forchheimer term! is also studied. In the absence of th
term, the flow at steady state is described by the follow
Brinkman-extended Darcy equation:

ne

e

]2u

]y2
1G2

n

K
u50. ~22!

The analytical solution of Eq.~22! can be written as

u5
GK

n S 12
cosh@r ~y2H/2!#

cosh~rH /2! D , ~23!
4-4
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LATTICE BOLTZMANN MODEL FOR INCOMPRESSIBLE . . . PHYSICAL REVIEW E 66, 036304 ~2002!
where r 5Ane/Kne. As has been pointed in Sec. II, as th
Reynolds number or the Darcy number is large, the nonlin
inertial resistance must be considered. In Fig. 2, the p
velocity of the flow is plotted, respectively, against the Re
nolds number and the Darcy number. The dashed lines in
figure represent the results from the SLBE for the Brinkm
extended Darcy equation, while the solid lines are
present LBM results for the generalized equation. As can
seen from Fig. 2~a!, for a fixed Darcy number (1025), the
effect of the nonlinear drag becomes more pronounced w
an increase in Re. Specifically, the results indicate that,
effect of the nonlinear drag is negligible for Re<0.1. When
Re.0.1, however, the effect of the nonlinear drag becom
significant and increases nearly exponentially with Re. Si
larly, Fig. 2~b! also indicates that for a fixed Reynolds num
ber (Re50.1), the effect of the nonlinear drag becomes m
significant with an increase in Da.

B. Couette flow

The Couette flow is also a channel flow similar to t
Poiseuille flow, but the flow is now driven by the upper pla

FIG. 1. Velocity profiles of the generalized Poiseuille flow f
different Reynolds and Darcy numbers. Symbols represent GL
solutions and solid lines represent finite-difference solutions.
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moving along thex direction with a constant velocityu0
instead of a constant force. The Reynolds number of
generalized Couette flow is defined by Re5Hu0 /n. At
steady state, the flow still obeys Eq.~20!, but with u(x,0)
50, u(x,H)5u0. Then this one-dimensional ordinary equ
tion is solved with a second-order finite-difference sche
with a uniform mesh of size 1000, and the finite-differen
solution will serve as an ‘‘exact solution’’ for comparison
The present GLBE is applied to this Couette flow for diffe
ent Reynolds and Darcy numbers. The computations
based on a 80380 lattice in all cases, and the initial an
boundary conditions are the same as used in the Poise
flow. In Fig. 3, the LBM velocity profiles, together with th
finite-difference solutions, are plotted as a function of Re a
Da. Good agreement is found between the LBM and
finite-difference solutions.

To study the effect of the nonlinear drag force, we appl
both the GLBE and SLBE to this Couette flow at Re510 for
various values of Da. In the case ofFe50, the Couette flow
has the following analytical solution:

u5u0

sinh~ry !

sinh~rH !
, ~24!

E

FIG. 2. Peak velocity of the generalized Couette flow for diffe
ent Reynolds and Darcy numbers.
4-5
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ZHAOLI GUO AND T. S. ZHAO PHYSICAL REVIEW E66, 036304 ~2002!
wherer 5Ane/Kne. In Fig. 4~a!, the velocity profiles from
the SLBE are present. For comparison, the GLBE results
also shown. One can observe that the SLBE solutions a
well with the analytical solution~24! in the Brinkman limit.
To further demonstrate the nonlinear drag effect, the valu
the velocity at the midway of channel is measured for diff
ent values of Re and Da.u(x,H/2)/u0 against the Darcy
number and the Reynolds number are drawn in Figs. 4~b!
and 4~c!, respectively. From the figure, we can see that
nonlinear drag effect increases both with the Darcy num
and the Reynolds number. For small Da and/or Re,
GLBE and SLBE produce almost identical results. But as
or Re increases, the nonlinear drag force hinders the fl
greatly, and it should not be neglected any more.

We also applied the GLBE to a modified Couette flo
where a permeable medium is positioned in the channel s
that there is a gap between the medium and the upper w
The porosity is set to be 0.1 for 0<y<H/2 and 1.0 for
H/2,y<H. As Re and Da are small, the nonlinear dr

FIG. 3. Velocity profiles of the generalized Couette flow f
different Reynolds and Darcy numbers. Symbols represent GL
solutions and solid lines represent finite-difference solutions.
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FIG. 4. ~a! Velocity profiles of the Couette flow against Rey
nolds number. The symbol3 represents the SLBE result, the sol
line represents analytical solution from Eq.~24!, and the dashed line
represents GLBE result.~b! Velocity at the midway of the cente
against Darcy number.~c! Velocity at the midway of the cente
against Reynolds number.
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LATTICE BOLTZMANN MODEL FOR INCOMPRESSIBLE . . . PHYSICAL REVIEW E 66, 036304 ~2002!
effect is negligible, and the velocity can be predicted by
Brinkman equation. It has been shown that the velocity p
file is linear in the gap, and exponentially decaying in t
porous medium@32#:

u5a1b~y/H21/2! ~H/2,y<H !,

u5a exp~r ~y/H21/2! ~0<y<H/2!, ~25!

where r 5Aen/(Kne), a52rKu0 /(2rK 1e), and b
52eu0 /(2rK 1e). In Fig. 5, velocity profiles are plotted fo
J51 and 4 at Re50.01 and Da50.001. The good agreemen
between the simulation and analytical solutions is clea
shown. The GLBE correctly captured the discontinuity of t
velocity gradient at the interface without incorporating t
stress boundary condition in simulations.

C. Lid-driven cavity flow

The lid-driven cavity flow without porous medium ha
been used as a benchmarking problem for many nume
methods due to the simple geometry and complicated fl
behaviors. In this section we apply the GLBE to the flu
flow in a square cavity of heightH filled with a porous me-
dium. The left, right, and bottom walls of the cavity a
fixed, and the upper wall moves from left to right with
constant velocity u0. The nonequilibrium extrapolation
scheme@31# is again applied to the four walls for velocit
boundary conditions, and the flow field is initialized by se
ting r51.0 andu50.

It is known that ase→1, the generalized Navier-Stoke
equation will reduce to the standard Navier-Stokes equat
We will first apply the GLBE to the cavity flow in this cas
to verify it. In simulations, we set Da5104 and Re5400 and
1000. The lattice size is fixed at 1283128. The relaxation
time is set to be 0.5174 and 0.5263 for Re5400 and 1000,
respectively. In Fig. 6, the velocity profiles through the ca
ity center are plotted. The benchmark solutions of Ref.@33#

FIG. 5. Velocity profiles of the Couette flow for different vis
cosity ratios. Solid lines are the approximate analytical soluti
from Eq. ~25!.
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are also included for comparison. One can see that the GL
solutions agree well with the benchmark solutions for t
cases considered.

The GLBE is also applied to the cavity flow with sma
values ofe and Da (e50.1, Re510). In Fig. 7, the velocity
profiles through the cavity center are plotted for differe
Darcy numbers. For comparison, the flow is also solved b
finite-difference scheme based on a 2563256 mesh. Clearly,
the LBE solutions agree well with the finite-difference sol
tions for these cases. It is also seen that as Da decrease
boundary layer near the moving lid becomes thinner, and
vortex in the cavity becomes weaker.

V. SUMMARY

In this paper a lattice Boltzmann model has been p
posed for incompressible fluid flows in porous media. T
influence of the porous medium is incorporated into t

s

FIG. 6. Velocity profiles through the cavity center. Solid line
are GLBE solutions, and symbols are benchmark solutions in R
@33#. ~a! u component along the vertical line through the cav
center.~b! v component along the horizontal line through the cav
center.
4-7
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ZHAOLI GUO AND T. S. ZHAO PHYSICAL REVIEW E66, 036304 ~2002!
model by introducing a newly defined equilibrium distrib
tion and adding a force term into the LBE. In the prese
model, both the linear and the nonlinear drag effects of
medium are considered, and it is applicable to porous flo
over a wide range. Another attractive feature of the pres
model is its ability to model automatically the interfaces b
tween different media without invoking any addition
boundary conditions. This feature enables the present L
more useful in simulating flows in a medium with a variab
porosity. Furthermore, the present model is very close to
standard LBM: a simple equilibrium distribution with
simple force term. Therefore, its advantages~e.g., computa-
tion efficiency, parallism, and capability to handle interfac
between different fluids! over the solvers for the generalize
Navier-Stokes equations are just as those of the stan
LBM over the solvers for the Navier-Stokes equations. F
thermore, the interaction between the fluid and the med
is modeled by the force term in the present model. This is
fact, equivalent to implement an effective boundary con

FIG. 7. Velocity profiles through the cavity center. Symbols re
resent GLBE solutions and solid lines represent finite-differe
solutions.~a! u component along the vertical line through the cav
center.~b! v component along the horizontal line through the cav
center.
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tion between the fluid and the solid, like the model propos
in Ref. @19#. From this point of view, one perhaps can d
rectly deduce the drag force due to the porous medium fr
the boundary rule which is used in the LBM at pore sca
and thus the connection between the LBMs at both the p
and the REV scale is built up. This needs further study an
beyond the present study.

Numerical simulations of several 2D generalized P
seuille flow, Couette flow, and lid-driven cavity flow hav
been carried out to validate the present model. It is obser
that the present model produces satisfactory solutions
these problems compared with the analytical or the fin
difference solutions. Numerical results also indicate that
nonlinear drag force due to the porous media plays an
portant role for high-speed flows, and it should not be n
glected.

Finally, the present model can only be used to isotherm
single-phase fluid flows. Extensions for modeling the pro
lems of convective heat transfer and multiphase flow b
with and without a phase change will be considered in fut
studies.
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APPENDIX: DERIVATION OF THE MACROSCOPIC
EQUATIONS FROM THE LBE

In this appendix we derive the macroscopic equatio
from the LBE~9!. TheD2Q9 model is taken as an exampl
With the definition of the EDFf i

(eq) , one can easily obtain
the following moments:

(
i

f i
(eq)5r, ~A1!

(
i

ei f i
(eq)5ru, ~A2!

(
i

eiaeib f i
(eq)5cs

2r1
1

e
ruaub , ~A3!

(
i

eiaeibeig f i
(eq)5cs

2r~uadbg1ubdag1ugdab!.

~A4!

The macrodynamical behavior arising from the LBE~5! can
be found from a multiscaling analysis using an expans
parameterl, which is proportional to the ratio of the lattic
spacing to a characteristic macroscopic length. To do so,
following expansions are introduced:

f i5 f i
(0)1l f i

(1)1l2f i
(2)1•••, ~A5!

]

]t
5l

]

]t1
1l2

]

]t2
, “5l“1 . ~A6!

-
e
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Expandingf i(x1eid t ,t1d t) in Eq. ~9! aboutx andt, and
applying the above multiscaling expansions to the resul
continuous equation, one can obtain the following equati
in the consecutive order of the parameterl:

O~l0!: f i
(0)5 f i

(eq) , ~A7!

O~l1!: D1i f i
(0)52

f i
(1)

tDt
, ~A8!

O~l2!:
] f i

(0)

]t2
1S 12

1

2t DD1i f i
(1)52

f i
(2)

tDt
, ~A9!

whereD1i5
]

]t1
1ei•“1.

Note that from the definitions ofr and u @Eq. ~11!# and
the moment equations Eqs.~A1! and ~A2!, one can obtain
that

(
i

f i
(k)50, (

i
ei f i

(k)50 for k>1. ~A10!

Taking moments of Eq.~A8!, we can obtain the macroscop
equations on thet15et time scale andx15ex space scale:

]r

]t1
1“1•~ru!50, ~A11a!

]~ru!

]t1
1“1•P (0)50, ~A11b!
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whereP (0) is the zeroth-order momentum flux tensor giv
by Pab

(0)5( ieiaeib f i
(0)5cs

2rdab1ruaub /e. The first-order
momentum fluxP (1)[( ieiei f i

(1) can be simplified using
Eqs.~A11!. After some standard algebra, we obtain that

Pab
(1)52cs

2td tr~“1aub1“1bua!, ~A12!

where the terms of orderO(M3) have been neglected. Her
M5u/cs is the Mach number.

The macroscopic equations on thet25l2t time scale are
derived by taking moments of Eq.~A9!. With the aid of Eqs.
~A11!, the final equations can be written as

]r

]t2
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]~ru!

]t2
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where

ne5S t2
1

2D cs
2d t . ~A14!
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